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A 1411t|_l_-]_lock 14ultlgrid Meth_ for the Solution of the _Di_o-

hal _lar and Navier-St_ F_tions

A multiple-block n_Itigrid method for the soluticn of the 3-D Euler and

Navier-Stokes equations is presented. The basic flow solver is a cell-

vertex method which eniDloys central difference spatial a_proximations and

Runge-Kutta time steDDing. The use of local time stepping, implicit resi-

dual smoothing, multigrid techniques and variable-coefficent ni_nerical

dissipaticn results in an efficient and robust scheme. The rm/Iti-block

strategy places the block loop within the Runge-Kutta loop such that accu-

racy and convergence are not effected by block boundaries. This has been

verified by comparing the results of one- and two-block calculations in

_nich the two-block grid is Generated by splitting the one-block grid.

Results are presented for both Euler and Navier-Stokes computations of

wings and wing/fuselage combinations.

Blockstruktur, Mehrgitter, Runge-Kutta Schema, Euler-Glei-

chungen, Navier-Stokes-Gleichungen

_t

In der vorliegenden Arbeit wird ein blockstrukturiertes Mehrgitterverfahren

flit die L6sung der 3-D Euler und Navier-Stokes-Gleichung_n vorgestellt. Der

Str_mungsl6ser besteht aus einer Zelleckpunktdiskretisierung mit zentralen

Differenzen und einem Run e-Kutta-Zeitschrittverfahren. Mit Hilfe von lokm-

len Zeitschritten, einer impliziten Gl_ttung der Residuen, eines Mehrgit-

teralgorithmus' %nnd kOnstiichen dissipativen Termen mit varlab!er Ska-

lierung erblilt man ein effizientes und robustes Verfahren. Bei Verwendung

mehrerer Rechenbl_cke wird die Rechenschleife _ber die Bl_cke innerhalb der

Schleife 0ber die Stufen des Runge-Kutta-Schemas angeordnet, so da_ Genau-

igkeit und Konvergenz des Verfahrens nicht durch die Blockgrenzen beein-

tr_chtigt werden. Dieses kann anhand von Rechnungen mit einem bzw. zwei

Rechenbl6cken gezeigt werden, wcbei das Netz mit zwei BlScken durch Auftei-

lung des Netzes mit elnem Block erzeugt wurde. Es werden Ergebnisse for

Flf_el und Fl_gelru_p_inationen und LSsungen der Euler- und Navier-

Stokes-Gleichungen angegeben.
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Introduction

Advances in computers and algorithms have reduced the cost of simulating complex

flows to within reasonable values. However most calculations of practical interest still pose

problems either due to their shear size, or their geometric complexity, and sometimes both. A

technique that greatly eases this restriction is the use of multi-block strategy. In this

approach, the physical domain is subdivided into several smaller parts which have simpler

topologies and are accurately modeled by a manageable number of points. The grid genera-

tion also becomes easier because of the simplier topologies in each block. Relaxing con-

straints on the connectivity between block can further simplify the grid generation stage. In

most cases, however, techniques that simplify the generation of the grid usually complicate

the implementation of the flow solution algorithm.

The primary objective of this work is to implement a proven flow solver in a multi-block

frame work while preserving as nearly as possible its accuracy and convergence properties.

The basic flow solver 1 has been validated for three-dimensional flows over wings and found to

be accurate and efficient for single-block domains. The solver is a cell-vertex method which

uses central spatial differences and Runge-Kutta time stepping to solve the Euler or thin-layer

Navier-Stokes equations. Several acceleration techniques are applied to improve the

efficiency. Among these are: multigrid, local time-stepping, enthalpy damping (for inviscid

cases), implicit residual smoothing, and blended second and fourth difference numerical

smoothing. Turbulent flow calculations employ a Baldwin-Lomax model.

The multi-block algorithm presented here completely preserves the accuracy and conver-

gence properties of the base solverl Block loops which are placed within the Runge-Kutta

loop, combined with strict treatment of cut ghost point data, results in a robust algorithm.

The algorithm is implemented to support in-core solutions, or out-of-core solutions using a

SSD or similar device, with an acceptable overhead.

A secondary objective is to make the implementation as topology independent as possi-

ble without making the program too complicated to use. This is achieved by developing a

flexible data structure to describe and control all boundary conditions and block mappings.

The method is validated by comparing results from one artd two block domains to the

same problem. Single block grids are split in different ways so that the global domain is

identical. Solution are presen{ed for viscous and inviscid wings, and for an inviscid wing-

fuselage combination. Comparisons are made with respect to the accuracy and efficiency.

A brief description of the governing equations and the basic flow solver is given; how-

ever, more detail may be found in reference 1. Emphasis is placed on the multi-block aspect

of the algorithm, which is discussed in detail.

Governing Equations

The normalized integral form of the mass-averaged Navier-Stokes equations can be

written as



where
U=(p,pu,pv,pw,pE)T

Thevariables9, u, v, w, and E denote the density, the Cartesian velocity components, and the

specific total internal energy. When appropriate, the Cartesian velocity components are also

denoted as u 1, u2, u3. The control volume is denoted by f_, its boundary surface by 011, and

the unit outward normal by _f. The flux dyadic i_ is divided into its Euler (e) and viscous (v)

components.

pu_ + pi ".

L --/pvV+pTl and _',--
lpwv +.p_'l
t OIlY J • •

where _ is the Cartesian velocity vector and l, j, and _ are the Cartesian unit vectors (also

denoted as _,-_2,_). The shear stress dyadic is defined in terms of tensor notation as

[0u i _uj 2 0uk']

The temperature T pressure p and

the following algebraic relations:

enthalpy are related to the dependent variables through

H=E+T and p=pT

The thermodynamic variables, P, T, and p are normalized by their freestream states

P., T., and p.. The velocity components are normalized by yP_"P-_.. Employing the

empirical power rule for viscosity results in the following relations for the normalized viscos-

ity and conductivity:

,vlt2M.
= -_-S-_T/T _0'75 and k = 'Y 12Is Re.'" y--1 Pr

Turbulence is modeled through the introduction of a turbulent viscosity I.tr In the shear stress

terms, the laminar viscosity is replaced by _.+t.tt, and the conductivity is modified by replac-

ing I.vPr with I.t/Pr+l.tt/Pr.



The Solution Algorithm

The computation domain is formed by partitioning the physical domain into hexahedrons

to form a structured grid or several connecting structured grids. Discrete point values of the

solution vector are stored at each vertex of the grid. Solutions to equation 1 are obtained by

approximating that equation at each vertex and integrating in time to obtain a steady state.

For the sake of efficiency, the correct time evolution is altered by the application of several

acceleration techniques. The solution algorithm follows the method of lines 2 in which the

time derivative is integrated as an ODE subject to the spatial terms as a forcing function.

and

_t _Udv = -R(U)

R(U) = _l_.ffds 3

For convenience of discussion, the spatial terms, or residuals, are further divided into contri-

butions from the Euler, viscous and numerical smoothing terms.

R(U) = Re(U) + R,,(U) + R,(U)

Equation 2 is integrated in time using a five-stage Runge-Kutta method.

WO=U -

W k = W ° - e.kVt R k-t k=1,2,3,4,5

where

1._ t = L- W 5

k

R k = L" I_k 1_k = Re(W k) + Rv(W °) + _ Yk_Rs(W m)
rrl-- O

The viscous residual is computed only during the first stage and held fixed thereafter. The

numerical smoothing terms of a given stage are a linear combination of the smoothing over

several stages 3. Values for the parameter ot are

cq= 1/4, _=1/6, a 3=3/8, _4 =1/2, ot_=l.



TheoperatorsL and/_ denote the accumulated effect of boundary conditions and acceleration

techniques.

The spatial terms ate constructed centrally about each point in the computational domain.

Each point lies at the intersection of eight cells which when combined form a super-cell, Fig.

I. The small cells will be referred to as the compact cells. The super-cell outlines the extent

of the stencil of the physical spatial terms.

The inviscid residual of the super-cell is formed by first computing the residual of each

compact cell, and then summing over the eight contributing cells. The flux through any face

of a compact cell is computed from the arithmetic average of the conserved variables at the

corners.

The contributionof theviscousterm iscomputed usingan auxiliarycellaboutthe point.

The verticesof thiscellarc the centersof the eightcompact ccUs comprisingthe super-cert.

The facenormal vectorsfor the auxiliarycellare computed by averagingthe normal vectors

of thenearbycompact cellfaces.The gradientson thefaceof theauxiliarycellarecomputed

usinga localcoordinatetransformation.

W=_+ _+_;

for ? = x, y, or z. Only the gradients which are normal to the face in the cell and are in a

selected direction are accounted for, resulting in the thin-layer approximation. Multiple direc-

tions may be selected. Derivatives at the face are computed by second order central

differences. Scalar quantities are computed from second order averages. The viscosity is

computed from the average temperature.

The numerical smoothing employed is based on the formulation of Jameson, Scbmidt,

and Turker 1. It is a combination of second and fourth derivative operators with coefficients

which depend on the pressure gradient, the acoustic wave speeds, and the cell aspect ratios.

The operator is formulated as a conservative one-dimensional operator for each coordinate

direction.

Boundary Conditions

The present method supports five physically different boundary conditions: slip and no-

slip wails, far-field conditions, symmelay planes, and cuts or mapped boundaries. The boun-

dary conditions are implemented in a flexible data structure that imposes no assumptions on

the topology. The implementation combines a variety of strategies, including the use of ghost

ceils, and impacts the flow solver at several stages.

For the present, it is useful to consider the topological arrangement of boundaries of

cell vertex methods and compare them with the more common cell centered control volume

approach. Figure 2 illustrates both approaches for two common situations; the leading and

trailing edge regions of a wing with an H-type mesh. The grids in both cases are identical;

however the orientation of the flow variables is crucially different. The flow variables for the

!cell vertex method coincide with the grid points, whereas for the cell centered method the

Iflow variables are located at the center of the cell (or arc an average over the cell). As a
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consequence,thecellcenteredmethodhasanaturalalignmentbetweentheflowvariableand
thecontrolvolume,andbetweentheboundariesofthecontrolvolumeandthedomainboun-
daries.Incontrast,flowvariablesofthecellvertexmethodcanlieontheinterfaceoftwo
differentboundarytypes,andthesuper-cellcanextendoutsidethedomainaswellasoverlap
boundarytypes.

Thedifferencesdonotcausedifficultiesbuttheymustbetakenintoconsiderationwhen
applyingtheboundaryconditions.Inadditiontosettingtheflowvariablesatghostpoints,the
implementationofboundaryconditionsinvolvesmodificationstotheinviscidcompactresidu-
als,thenumericalsmoothing,andsuper-cellresiduals.Inthefollowingsectionseachtypeof
boundaryconditionisbrieflydiscussed.

Slipwallconditionsrequirenoflowthroughthesurface.Forthecompactinviscidresi-
dualofghostcellslyingonaboundaryofthistype,thecomponentofmomentumnormalto
theboundaryisreflectedfromtheneighboringinteriorcell.Additionallythesuper-cellresi-
dualismodifiedbyasimilarprojectionsuchthatthenormalcomponentofthesolutionis
zeroaftertheeachRunge-Kuttastage.Theghostpointvaluesprimarilyinfluencethe
numericalsmoothingterms.Thusfirstorderextrapolationisadequatetosettheflowvari-
ables.

Theno-slipconditionrequiresthevelocitytobezeroattheboundary.Allmomentum
componentsofthecompactinviscidresidualofghostcellsonano-slipwallarereflected,and
allsimilarcomponentsof therelatedsuper-cellresidualsarezeroed.Theflowvariablesat
ghostpointsaresetbyreflectingthevelocitiesandthermodynamicquantitiesaretreatedasif
symmetric.

Thesymmetryconditionrequirestheflowtobesymmetricwithrespecttoaspecified
plane.A directconsequenceisthatthereisnoflowthroughtheplane,similartoaslipwall.
Theoperationstothecompactandsupercellresidualsareidenticaltothoseof slipwalls
exceptthesurfacenormalvectorisconstantoverthesurface.Flowvariablesatghostpoints
arereflectedfromtheinteriorpoints.Polarsingularitiesareusuallytreatedassymmetry
planes.

FarfieldboundaryconditionscommunicatetheinfluenceofthefreestreamMachnumber,
enthalpy,andflowangletothecomputationaldomain.Forsubsonicinflow/outflowboun-
daries,alocallyone-dimensionalcharacteristicapproach5isusedtosetthevalueofflowvari-
ablesatboundaryandghostpoints.Thesuper-cellresidualsatfarfieldboundarypointsare
zeroed and the flow solver discussed previously is not applied. The equations are linearized

about the values at the interior point nearest to the boundary, and characteristic quantities are

extrapolated from either the interior or the far field depending on the direction of the flow

through the boundary. In inviscid calculations, the energy is computed such that freestrearn

enthalpy is enforced. This is essential if enthalpy damping is to be used. The induced veloci-

ties due to lift are be accounted for through the use of a compressible lifting line theory.

Cut boundaries communicate data between two computational blocks or between discon-

nected regions in the same computational block. Ghost points associated with cut boundaries

correspond to a point somewhere within the interior of the physical domain. In the present

implementation, the mapping is assumed to be "one to one and onto". The condition is imple-

mented by copying values from the interior point to the ghost point. In multi-block out-of-

11



core calculations the interior point is not readily available. The data required to update a cut

is stored on a record addressable file and is updated after each Runge-Kutta stage as well as

after the multigrid injection and prolongation operations. The sequence for updating ghost

points is critical to the preservation of the convergence properties of the basic flow solver.

This is discussed in more detail in the following section.

Multi-Block Algorithm

In a multi-block approach, the global domain is divided into several smaller blocks for

which grids are more easily generated. The solution algorithm is applied to each block in

some prescribed sequence. A variety of multi-block strategies have been applied to computa-
tional methods. The main issue is at what depth within the algorithm should the block loop

be placed, and how often should data be transferred between blocks. The simplest approach

to implement is to wrap a block loop around the complete flow solver. If applied to the

present flow solver, for example, one complete multigrid cycle would be performed in a given

block before moving on to the next. In this approach, it is impossible to maintain constant

communication of data between the block interfaces. Consequently, ghost point data at the

cuts must often lag, or sometimes lead, the data at the interior points. This approach works

well with equations which can be solved by relaxation methods, but is not suited for fast

time-asymptotic methods. A single-grid version of the present flow solver was used in a

multi-block algorithm of this type 6'7. Accurate solutions were obtained; however, the number

of time steps that could be performed in each block varied with the severity of the case. In
another instance involving a time-asymptotic multigrid algorithm s, it was necessary to con-

clude the calculation with a significant number of single-grid time steps in order to converge

the solution. As the convergence rate of the basic flow solver increases, the importance of

block communication also increases.

In the present approach, the objective is to preserve the accuracy and rapid convergence

properties of the basic flow solver. To do this the block loop is placed deep within the algo-

rithm. Although this introduces some computational overhead, the resulting multi-block algo-

rithm closely simulates the results of a single block calculation. The method has been imple-

mented to either run in-core on a large memory machine or out-of-core using a solid-state-

disk (SSD) or similar device. The following description of the method is broken into three

topics: 1) the block solution algorithm, 2) the data structure of field variables, 3) the data

structure and control of boundary conditions.

The Block 5olution Algorithm

The program structure is on three levels. At the top level axe routines that control the

multigrid strategy, and thus, the grid level. At the middle level are routines controlling the

block loops, and at the bottom are block structured routines which perform an operation on a

given block and level. Figure 3 shows an approximate block diagram of the multi-block solu-

tion algorithm. The left side of the figure illustrates the major steps of the multigrid algo-

rithm while one Runge-Kutta time step is expanded on the fight side. The operations indi-

cated within each box are performed for each block of data before proceeding to the next

block. Each stage of the Runge-Kutta time step is in a separate block loop with the boundary

12



conditionsappliedin twopasses,beforeandaftereachstage.Thisisdonetoensurethatall
variablesareataconsistentlevelatthestartofeachstageofthetimestep.Moreexplained
furtherinthesectiononboundaryconditions.

Data Structure

The data structure accommodates in-core computations or, for large problems or small

machines, out-of-core computations. For in-core computations, all levels and all blocks of

each field variable are stored in a long array. A separate pointer array stores the starting point

of the data for each block and level. All data required for a block operation is passed into the

low-level block structured routine through the argument list. In principle the low-level routine

does not know or need to know on which block it is operating.

For out-of-core computations, only the field variables for a single block are stored in

core at any given time. As before, for each block there is a pointer array which stores the

starting point of each level. The data for all blocks and levels are stored on two sets of files.

The use of two sets of files, as shown in fig. 4, eliminates the need for using slower record

addressable I/O (input/output), and permits the I/O to be performed synchronously. The

required data is read from the 'INPUT' file(s), a block operation is performed, and the result-

ing data is written to the 'OUTPUT' file(s). At the end of the block loop, all flies are

rewound and files to which new data was written are switched with the corresponding

'INPUT' file. The amount of I/O is limited by reading only the data needed to perform the

block computation, and writing only the results of the computation. This is done by distribut-

ing the field variables across a set of files, instead of a single large file. For instance, when

computing the multigrid corrections, only the first and last solutions on a given level are

needed; residuals, smoothing coefficients, cell normals etc. are not needed and should not be

read or written. I/O is also limited by allocating a different set of fries for each level. Some

data quantities, such as geometric data, are required only as input to a calculation and are

never altered. As such, only an 'INPUT' file is needed. At present, the number of files

required for the field variables is 5 times the number of multigrid levels.

Boundary Conditions

The correct sequencing of the boundary conditions is perhaps the most important aspect

of the multi-block algorithm. The basic flow solver is a time-asymptotic method. Its stability

and convergence properties are strongly tied to the assumption that all variables entering into

the calculation of a spatial derivative are at the san_ stage and time level. When a ghost

point is allowed to lag or lead the interior data, the derivative computed near the boundary

looses its physical significance. Since the deviation caused by the lag or lead is tied directly to

the rate at which the flow is changing, a rapidly converging solution wiU be most seriously

affected. In the present algorithm, the lag and lead affects are completely eliminated through

the following three steps.

The first step is to ensure that all the boundary conditions are enforced before starting

the Runge-Kutta procedure. This is especially important for the multigdd process, because

the coarse grid solution is injected from the free grid and may have little in common with the

iprevious coarse grid solution.

13



The second step involves the Runge-Kutta procedure itself. During this phase, the boun-

dary conditions are implemented in two passes, as was shown in fig. 3. In the first pass, only

cut boundaries, whose source data comes from higher blocks, are implemented. In the second

pass, all non-cut boundaries plus cut boundaries whose source data come from the current or

lower blocks are implemented. The effect of this procedure is illustrated in figure 5 for a

simple two block topology that connects on one side, and for one stage of the Runge-Kutta

time step. At the beginning of a Runge-Kutta stage, the data at all points are at the k-th level

except the cut ghost points of block 1, which are at the k-1 level. After applying the first

pass of boundary conditions all points in block 1 are at the k-th level. The Runge-Kutta stage

advances the interior solution to the k+l level, and the second pass of boundary conditions

brings all ghost points of block 1, except the cut points, also to the k+l level. Moving to

block 2, the first pass has no effect because the source data for this cut lies in a lower block.

The Runge-Kutta stage advances the interior points to the k+l level, and the second pass of

boundary conditions brings all ghost points to the same level. At the completion of the block

loop, all points are at the initial level plus one. More importantly, at the start of each Runge-

Kutta stage, all ghost points are at the same level as the interior points.

This two pass procedure works well for simply connected domains, but it does not

entirely eliminate the lag for more complex topologies. This brings us to the third step. Fig-

ure 6 illustrates a topology with three blocks which overlap at a corner (in 3-D this represents

a line of data). The corner ghost point of block 3 maps to a ghost point of block 2 which in

turn maps to an interior point in block 1. The ind.irect mapping occurs whenever the corner

point is treated as a contiguous part of two overlapping sides, and results in a lag after the

two pass procedure. In the most complex case of 8 blocks all intersecting on a single corner,

the number of mappings required to connect the ghost point with the appropriate interior point

is greater. The corner point can be brought to the correct level by cycling through the cut

boundaries a sufficient number of times; however, the I/O cost is prohibitive. The obvious

remedy is to direcdy map the corner point from the correct interior point, rather than try to

connect it contiguously with one of the sides. Within the present boundary data structure, this

is easily done simply by treating the corner point at a separate cut.

Validation and Results

The validation consists of direct comparison of single block and multi-block results.

Several different single block grids were split along coordinate planes to give two block grids

which are geometrically identical to the single block case. All multi-block computations are

performed with the same parameters (time stepping, smoothing, etc) as the associated single

block case. No attempt is made to tune any of the parameters to optimize the result of any

case. Comparing the single block base-line results with the multi-block computations gives a

direct way to assess the accuracy and efficiency of the multi-block algorithm. A thorough

validation of the basic flow solver for single block domains is presented in reference 1.

Computations were performed for viscous and inviscid flows about an ONERA-M6 wing.

Both cases are at a Mach number of 0.84 and an angle of attack of 3.06 0. The Reynolds

number for the viscous case is 6 million based on the mean chord. Also presented are invis-

cid solutions for the flow over the DLR-F4 wing-body combination at a Mach number of .75

and angle of attack of .84 °.
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Thefirstsetofcalculationswereperformedout-of-coreonaCray-XMPwith16MWof
corememoryand64MWSSDmemory.Thesmallcoresizelimitedthesizeofthetestcases
tounder250thousandpoints(=623points).TheinviscidcasewascomputedonanO-Ogrid
topologywith128x32x32cells.Theviscouscaseemployeda C-Ogridtopologywith
112x24x16cells(16spanwise).Theinviscidgridwassplitalongeachcoordinatedirectionto
givethreemulti-blockcases.Theviscousgridwassplitonlyinthei andk directions.The
presentimplementationoftheBaldwin-Lomaxturbulencemodelrequiresanyturbulentregion
toresideinthesameblockasthewallfromwhichtheturbulentdistancefunctionismeas-
ured.Thepresentgridwastoocoarsetoallowasplittinginthej-direction.

Baselineresultsfortheinviscidcaseareshowninfigures7a-e.Comparisonofthethree
multi-blockcasewiththebase-lineisshowninfigures8a-d.Theconvergencehistoriesare
essentiallyidenticaltothebase-lineforallthreesplittings,asaretheCpdistributionsatthe
wingrootsection.Althoughthei-splitcasepiacesthecutattheleadingedge,thereisno
visibledifferencethere.Thecutboundariesfortheothercasesdonotintersectthewingroot
andthereforethegoodagreementistobeexpected.At thespanwisestationofthecut,the
k-splitcasegivesaslightlythickershockthanthebase-line.TheCp contours on the wing

upper surface show that the cut of the k-split case is close to the bifurcation point in the wing

shock structure. The deviation is attributed to the approximations made to the smoothing term

at cut boundaries. A similar set of results is presented for the viscous case: figures 9 a-e,

show the base-line results, figures 10 a-d compare the mialti-block cases with the baseline. As

with the inviscid case, the convergence histories and Cp distributions show little deviation

from the base line case, except for the k-split case which also thickens the shock.

Calculations for the last case, the DLR-F4 wing-body, were performed in-core on a

Cray-2. The surface grid (coarser than actually used) is shown in figure 11. The topology is

similar to a H-O topology except the entire k-plane maps onto the fuselage. The single block

grid, having 208x24x64 ceils, was split in the k-direction to form upper and lower blocks.

Figure 12 a-d compare the convergence histories and Cp distributions on the wing. The Cp

distribution on the fuselage is given in figure 13. There are no significant differences between

the single block case and the multi-block case.

The computational overhead, measured in terms of CPU time, varies from 8% to 20%

depending on the case. Much of the overhead can be attributed to two sources. When a sin-

gle block domain is split, the cut plane is duplicated in the second block increasing the total

number of points. This increase was as much as 14% in the case of the viscous grid split in

the k-direction. The second source of overhead is the reduction of loop length that accom-

panies the decrease in block size. Where possible, the major routines have been coded to

loop over the entire block in one loop so as to minimize this effect. In figure 14 a and b, the

computational rate ( in thousands of points per second) is plotted versus the block size (in

thousands of points). The figure shows the multi-block case along with a single block (non-

multigrid) case at different grid sizes. Note that the single block case experiences a large

reduction in computational rate due to the reduction in the total number of points.
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Conclusions
A multi-block algorithm has been developed and validated for inviscid and viscous flows

about aircraft configurations. The method preserves the convergence and accuracy properties

of the original flow solver. The method is "not sensitive to the introduction of new cut planes

at block boundaries. This allows domains to be blocked primarily on geometric considera-

tions rather than flow considerations. Computational overhead varies from 8% to 20%

depending on the case; however, much of the overhead is attributed to the decrease in block

size that resuhs from splitting a single block grid. In a realistic situation, in which each block

is sufficiently large, the overhead is not expected to be significant.
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Fig. 1 Structure of a super-cell about a grid point
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Fig. 2 A comparison of cell centered and cell vertex methods
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(a) Surface grid

(b) I-section

(c) K-section

Fig. ii Surface grid, i=constant plane and j=constant plane

for the grid about the DLR-F4 wing-fuselage

27



100

10-1

10 .2

103

10`4

10_s

__..,.,.,.'X, One Block

\_\ .... Two Block

%..\,%

- _ \"_,.,

I I ,L I I

0 20 40 60 80 100

Time Steps

a) Influence of block structure cn residual convergence

-1,8

-1.2

-0.6

0.0

0.6

1.2 I I ! I I

0.0 0.2 0.4 0.6 0.8 1.0

x / chord

-1.8

-1.2

-0.8

0.0

0.6

1.2 .,

0,0 0.2 0.4 0.8 0.8 1.0

x / chord

b) Influence of block structure on pressure distributicrm

Fig/ 12 Comparison of single and multi-block solutions for

inviscid flow over the DLR-F4 wing-fuselage at

M = 0.75, u = 0.84

28



Fig. 12 continue

29



One Block

_...:::: ........... ,,-%_%.\ ...... ;
......... ..._/ ,' ,., ', ,' !

Two Blocks

Fig. 13 comparison of Cp contours on the fuselage for single
and multi-block solutions,

3O



o

x

n-

4o

30/
20

10

0

Single Block, Single Grid ...-.--o

in

12 % .L_./20 % Single Block MG#

Two Block

I I i I I I

25 50 75 100 125 150

Block Size X 10 .3

a) Influence of block size and block structure on computation
rates of the Euler version of the code

b)

o
,i-

X

n-

25

20 -

15

10

5

0

/
..-..o

Single Block. Single Gr_-"

g%.L mz__L15 % o

Two Block SMgle Block, MG

I I I I I

10 20 30 40 50

BlockSize X 10-3

Influence of block size and block structure on computation

rates of the Navier-Stokes version of the code

Fig. 14 The computational rate Vs. block size for single- and

multi-block computations

31



i

f



Forschungsbereich FlugmechanikJFlugfOhrung

Bereichsleitung: Flughafen, D-3300 Braunschweig

Institut for Flugmechanik
Institut for Flugffihrung
Institut fOr Dynamik der Flugsysteme
Institut fOr Flugmedizin
Hauptabteilung Verkehrsforschung

Forschungsbereich Str6mungsmechanik

Bereichsleitung: BunsenstraBe 10, D-3400 Gottingen
Institut for Theoretische Str_mungsmechanik

Institut fOr Experimentelle Str6mungsmechanik
Institut for Antriebstechnik

Institut for Entwurfsaerodynamik

Forschungsbereich Werkstoffe und Bauweisen
Bereichsleitung: Pfaffenwaldring 38-40, D-7000 Stuttgart 80

lnstitut for Strukturmechanik
Institut for Aeroelastik

Institut for Werkstoff-Forschung
Institut for Raumsimulation
Institut for Bauweisen- und Konstruktionsforschung

Forschungsbereich Nachrichtentechnik und Erkundung

Bereichsleitung: Oberpfaffenhofen, D-8031 WeBling/Obb.

Institut for Nachrichtentechnik
Institut for Hochfrequenztechnik
Institut for Optoelektronik
Institut for Physik der Atmosphare

Forschungsbereich Energetik

Bereichsleitung. Pfaffenwaldring 38--40, D-7000 Stuttgart 80

Institut for Technische Phystk
Institut for Technische Thermodynamik

Institut for Physikatische Chemie der Verbrennung
Institut for Chemische Antriebe und Verfahrenstechnik

Bereich Wissenschaftlich-Technische Betriebseinrichtungen

Bereichsleitung: Oberpfaffenhofen, D-8031 WeBling/Obb.

Projekttriigerschaft Weltraumforschung/Weltraumtechnik

Leitung: Linder H_he, D-5000 K_ln 90 (Porz)

Managementdienste

Projekttr_igerschaften for Arbeit, Umwelt und Gesundheit

Leitung: SL_dstraBe 125, D-5300 Bonn 2



VerSffentlichungen der DLR

• DLR-Forschungsberichte
,.. Wissenschaftliche Erstver0ffentlichungen aus der Forschungs-

_;-: Mnd.E_ntwicklungsarbeit der DLR

DLR-Mitteilungen

Beitr_ige _ber Versuchsmethoden und -anlagen,
Rechenprogramme, Vortragsveranstaltungen, Literatur-
_bersichten zu bestimmten Themenkreisen.

Jahresverzeichnis

der DLR-Forschungsberichte und DLR-Mitteiiungen

(deutsch und englisch)

Zeltschrift for Flugwlssenschaften und

Weltraumforschung (ZFW)

Wissenschaftliche Zeitschrift mit Beitr_igen aus der

Luft- und Raumfahrtforschung und -technologie.

DLR-Nachrichten

Zeitschrift mit Beitr_igen _ber aktuelle Forschungs-
arbeiten und mit Hinweisen auf DLR-Ver_ffentlichungen,

DLR-Erfindungen und -Patente, Projekttr_gerberichte

und Veranstattungen.

Wissenschaftliche Bedchte der Bereiche

0bersicht Ober die wesentlichsten Forschungs- und

Entwicklungsarbeiten, Struktur, Aufgabenspektrum der

Bereiche sowie Ausblick auf die zuk_nftige Entwicklung
(deutsch und englisch)

Erfindungen und Patente
Liste mit erteilten bzw. angemeldeten Patenten.


